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Abstract

By using, as a toy model, an analytical Equation of State which describes a

system that can exist in a liquid or vapor phase, we found scaling properties

regarding the critical and the ”flash” temperature. The ”flash” temperature

is defined as the highest temperature at which a self-bound system can exist

in hydrostatic equilibrium. We conjecture that the ”flash” temperature can

provide an alternate natural dimension-dependent scale of temperature, other

than the critical temperature.

KEY WORDS: equation of state; model; statistical mechanics; vapour-

liquid equilibria.
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We consider in this letter a simple Equation of State (EOS) derived from a Skyrme-type

interaction [1]. Such an interaction is short-ranged and typically used in nuclear physics.

Without any loss of generality in our study, it is particularly well suited for our purposes

since it allows an analytical derivation of the scaling properties:

p = −aoρ
2 + 2a3ρ

3 + ρkBT. (1)

This equation shows explicitly a cubic dependence on the density ρ, in much the same

way as in the van der Waals fluid. This form for the EOS is typical of a system that can exist

in a liquid or vapor phase, and suggests the existence, at low density, of a line of first-order

liquid-vapor phase transition in a p versus T phase diagram, ending up at a critical point,

where the transition is continuous. The temperature Tc associated with this critical point is

an upper bound for the range of temperatures in which the two phases coexist. Many other

models for nuclear matter have been studied [2], all of them exhibiting EOS with the same

van der Waals fluid-like behavior.

We are aware that the use of a mean-field approach (MFA) has as a drawback that the

actual spatial dimension in which the system is embedded loses in part its specificity, as

far as the critical behavior is concerned. The critical exponents have the same values in all

dimensions, and the EOS collapse into one single curve in the neighborhood of criticality,

when rescaled with the critical parameters. For a simple van der Waals gas this collapse

occurs throughout all the range of the thermodynamic variables, as can be trivially verified

[3]. The same is true for the analytically soluble model with Skyrme-type interactions above

mentioned.

Mean-field phase diagrams can be valuable, even below the upper critical dimension of a

model, to explore its regions of meta-stability. As is well known from the study of fluids, a

physical system can get trapped in a local minimum of its free energy, from which it escapes

only after a finite time. In an MFA the position of these local minima are bounded in the

phase diagram by the spinodal curves, which lie inside the region of phase coexistence. One

usually considers the isothermic, for quenches through processes at constant temperature,
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and adiabatic spinodals, which can be formally determined by the solutions of ∂p/∂ρ = 0,

keeping constant the appropriate thermodynamic variable. The processes of fragmentation

and super-heating are associated with the regions ∂p/∂ρ < 0 and ∂p/∂ρ > 0 respectively.

A particularly interesting region still inside the coexistence region is that in which a

hydrostatic equilibrium (p = 0) is still possible and the nuclear matter incompressibility

K(T ) =
∂p

∂ρ

∣∣∣
p=0

(2)

can be calculated. This region is delimited by 0 < T < Tfl and ρfl < ρ < ρo, where the point

(ρfl, Tfl) is obtained as the solution to p = ∂p/∂ρ = 0 and is known as the “flash” point.

This point represents the smallest density and the highest temperature at which a self-bound

system can exist in hydrostatic equilibrium, and belongs by definition to a spinodal. It can

thus provide an alternate natural dimension-dependent scale of temperatures, other than the

critical temperature. It is worth mentioning at this point that critical behavior at spinodal

points has been found in the study of mean-field versions of classical models in condensed

matter, such as the inconspicuous Ising model [4].

Here we proceed the discussion regarding the scaling with critical and flash parameters

through the simple analytical EOS , given by Eq. 1 [1],

Although derived for a 3D system [5], a straightforward reproduction of that reason-

ing can be used to show that it has the same functional form in every spatial dimension.

The relation between its coefficients and those of the interaction potential are dimension-

dependent though. These coefficients have dimensions [a0] = MD+1 and [a3] = M1−2D. The

density at saturation is obtained as the solution to p(ρ0) = 0, leading to ρ0 = a0

2a3
. The

incompressibility (at saturation) is obtained as

K(T ) =
∂p

∂ρ

∣∣∣
p=0

, (3)

which yields

K(T ) =
a2

0

4a3
[ 1 +

√
1 − 8a3kBT

a2
0

− 8a3kBT

a2
0

] (4)
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and K(0) =
a2
0

2a3
. The reduced incompressibility can thus be written as

K(T )

K(0)
=

1

2
[ 1 +

√
1 − 8a3kBT

a2
0

− 8a3kBT

a2
0

]. (5)

We begin by deriving a law of corresponding states for this EOS by rescaling the ther-

modynamical variables with their critical values. The critical point in which the liquid-vapor

coexistence phase disappear and matter starts to be described as a gas is obtained via

∂p

∂ρ

∣∣∣
ρ=ρc

=
∂2p

∂ρ2

∣∣∣
ρ=ρc

= 0 (6)

leading to

ρc =
ao

6a3
, kBTc =

a2
o

6a3
, pc =

a3
o

108a2
3

(7)

with

ao =
kBTc

ρc
, a3 =

kBTc

6ρ2
c

. (8)

Substituting the values of ao and a3 into Eqs. 1 and 5 one obtains

p′ = ρ′3 − 3ρ′2 + 3ρ′T ′ (9)

and

K(T )

K(0)
=

1

2
[ 1 +

√
1 − 4

3
T ′ − 4

3
T ′ ]. (10)

where p′ = p/pc , ρ′ = ρ/ρc and T ′ = T/Tc .

In this particular case, pc/kBTcρc = 1/3 , near the 3/8 value obtained for the van der

Waals gas. Eq. 9 is an expression of a law of corresponding states valid across different

spatial dimensions.

Now, let us show that a similar law can be obtained when the variables are rescaled

through their “flash point” values. At this point,

∂p

∂ρ

∣∣∣
ρ=ρf

= p(ρf ) = 0. (11)
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Imposing the above conditions on Eq. 1 we find

ρf =
ao

4a3
, kBTf =

a2
o

8a3
, pf = 0 (12)

with

ao =
2kBTf

ρf
, a3 =

kBTf

2ρ2
f

, (13)

which when substituted back into Eqs. 1 and 5 leads to

p∗ = ρ∗3 − 2ρ∗2 + ρ∗T ∗, (14)

and

K(T )

K(0)
=

1

2
[ 1 +

√
1 − T ∗ − T ∗ ]. (15)

where

p∗ = p/kBρfTf , ρ∗ = ρ/ρf , T ∗ = T/Tf . (16)

Here, p∗ does not scale with the “flash” parameter pf which is identically zero by construc-

tion, but with kBρfTf instead.

We can see in this case that Tc

Tf
= 4

3
. Eqs. 10 and 15 relate the incompressibility

curves in terms of different criticalities. Therefore, we found that the flash temperature

can provide an alternate natural dimension-dependent scale of temperature, other than the

critical temperature.
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